Wooden Geometric Puzzles: Design and Hardness Proofs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

No Easy Puzzles: A Hardness Result for Jigsaw Puzzles

We show that solving jigsaw puzzles requires Θ(n ) edge matching comparisons, making them as hard as their trivial upper bound. This result generalises to puzzles of all shapes, and is applicable to both pictorial and apictorial puzzles.

متن کامل

General Hardness Amplification of Predicates and Puzzles

We give new proofs for the hardness amplification of efficiently samplable predicates and of weakly verifiable puzzles which generalize to new settings. More concretely, in the first part of the paper, we give a new proof of Yao’s XOR-Lemma that additionally applies to related theorems in the cryptographic setting. Our proof seems simpler than previous ones, yet immediately generalizes to state...

متن کامل

Hardness Amplification of Weakly Verifiable Puzzles

Is it harder to solve many puzzles than it is to solve just one? This question has different answers, depending on how you define puzzles. For the case of inverting one-way functions it was shown by Yao that solving many independent instances simultaneously is indeed harder than solving a single instance (cf. the transformation from weak to strong one-way functions). The known proofs of that re...

متن کامل

Proofs of Retrievability via Hardness Amplification

Proofs of Retrievability (PoR), introduced by Juels and Kaliski [JK07], allow the client to store a file F on an untrusted server, and later run an efficient audit protocol in which the server proves that it (still) possesses the client’s data. Constructions of PoR schemes attempt to minimize the client and server storage, the communication complexity of an audit, and even the number of file-bl...

متن کامل

An Algorithm for Creating Geometric Dissection Puzzles

Geometric dissection is a popular category of puzzles. Given two planar figures of equal area, a dissection seeks to partition one figure into pieces that can be reassembled to construct the other figure. In this paper, we present a computational method for creating lattice-based geometric dissection puzzles. Our method starts by representing the input figures on a discrete grid, such as a squa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory of Computing Systems

سال: 2008

ISSN: 1432-4350,1433-0490

DOI: 10.1007/s00224-008-9104-3